Sports Coach Logo Sports Coach Training Principles Fitness Components


Train your two-lap Tools

Dr Matt Long and Geoff James present a model for 800m success.

At the European Endurance Conference held at Heathrow in the autumn of 2011, Canadian coach Wynn Gmitroski gave a presentation that focused exclusively on the physical and tactical components of two-lap running. This article builds on his presentation and takes it to another level by offering an original five-component model that includes mental characteristics and separates physical components into (a) power, strength, coordination, and (b) utilisation of energy systems.

Mental components: The 4 C's

Commitment is a long-term component involving the athlete and coach planning a macrocycle of training, considering wider lifestyle choices. The ability to focus for around two minutes of running represents what is referred to as 'intense concentration' rather than the kind of 'sustained concentration' characterised by endurance events.

In the pre-competition mode, the 800m athlete must have unshakeable self-belief to achieve their athlete-centred goals. During the more specific warm-up phase of pre-competition, mental imagery is typically employed to sustain this confidence.

There is a complex relationship between arousal and performance and Klein (1998)[2] used the 'Recognition-primed decision making' model to help us understand how people make effective decisions when faced with complex situations that require mind control which is paramount for 800m tactics.

Physical (power, strength, and coordination)

MAXIMAL muscular power depends on the interplay between strength and speed and, more specifically, the relationship between the speed of contraction and movement. Unlike maximal strength, which depicts how much force the athlete can exert, power is the ability to exert force at speed. An 800m runner who has reached the point of physical maturation will typically develop muscular hypertrophy through faster repetitions of appropriately loaded free weights or plyometrics using bodyweight only.

Reactive strength is the ability of the athlete to use the elastic properties of muscles and tendons. When muscles work eccentrically and lengthen, they store energy in the same way as a stretched elastic band that returns to its normal length when released. Physiologists term this the 'stretch-shortening cycle' (SSC) to articulate the high concentric forces which follow an eccentric stretch. Therefore, the performing of bounding exercises should be integral to 800m success.

Strength endurance is the ability of muscles to exert a given force despite increasing fatigue. The 800m runner will often employ hill running at the appropriate point of the training macrocycle to achieve this. British Athletics coach educator Brian Mackenzie (2007)[3] advocates the running of 'short hills' of no more than 30 seconds in duration with an inclination of between 5 and 15 degrees in gradient. 'Medium hills' (30-90s with a gradient of 1 in 6 to 1 in 10 degrees) may be appropriate for the out of competition period.

To achieve economy of movement, coordination of organising the limbs to generate force is a pre-requisite. The athlete must demonstrate the building blocks of balance and stability for this to be achieved. As well as the base of support in terms of the type of foot strike, this is dependent on the desired positioning of the centre of mass and postural stability and control with a neutral pelvis and spine being appropriate. More recently, the notion of 'core stability work' has entered coaching discourses and is underpinned by Hodges and Richardson's (1997)[4] work on how the deep trunk muscles, namely the Transversus Abdominis, Multifidus, Internal Oblique, Paraspinal, and Pelvic floor, are key to controlling the lumbar spine during dynamic movement. Core stability exercises can be conducted as separate sessions.

Before sessions with a healthy fitness component, the 800m runner needs to work on:

  1. 'Functional flexibility in terms of the warm-up.
  2. Flexibility to restore range of movement (ROM) during the cool-down.
  3. Flexibility to increase ROM as a separate session.

The key variable is that (a) is dynamic, whereas (b) and (c) are passive, with stretches performed in (b) typically lasting up to 15 sec and (c) up to 30 sec. 

Physical (energy systems)

The aerobic energy system is characterised by lower intensity exercise. While the training of this energy system may predominate over the winter months, the successful 800m runner needs to incorporate this to varying degrees at all points of the macrocycle for efficiency of the oxygen transport system, facilitated by the heart and lungs. In terms of duration, developmental work must be conducted over a minimum of 20 minutes and can be either (a) continuous or (b) divided up into distinct repetitions.

Speed endurance can maintain either optimal (controlled) speed as fatigue increases for the two-lap event. The predominant but not exclusive energy system is the lactate or 'linking' energy system. This system can operate without oxygen and uses fuel stores that produce lactate and acid. Although the former is a useful source of athletics fuel, the latter is a fatigue factor and slows the athlete. An elite male or female, 800m runner, may accumulate high levels of acidosis approaching the latter stages of the third quarter of the race (70-85 seconds) through to the finish. The 800m runner must train to improve their anaerobic threshold (onset of acid accumulation in the blood). This is typically achieved by repetition running close to race pace with recovery of between three and five minutes between efforts.

George Brooks (1986)[7] used the term 'lactate shuttle' to describe the dynamic action of lactate as a metabolite moving about within muscles and the systemic circulation to provide metabolic energy. It is established that 800m running should be 10% alactate, 30% anaerobic lactate, and 60% aerobic. Mackenzie explains that if an athlete's lactate threshold (LT) is reached at relatively low exercise intensity, it indicates that the 'oxidative energy systems' in the muscles are not as efficient as they should be. Thompson (1994)[5] introduced the term 'Lactate Dynamics Training' to articulate training for the optimal use of lactate around the body. In interspersing phases of more intense activity with less intense activity and the kind of active recoveries advocated by Thompson (1995)[6] when using New Interval Training, the 800m athlete will typically undertake under-distance sessions of no more than five repetitions with active recoveries between repetitions and a near to full recovery between sets.

Maximal speed emphasises the ATP-CP system and is characterised by relatively short bursts (maximum 10 seconds) of very high-intensity. It is a stored start-up system capable of operating without oxygen, with no lactate or acid produced. Thompson (1995)[6] maintains that the foundation for developing maximal running speed is the 'Flying 30s' session with the coach marking out an acceleration zone of 30m, a 'maximal speed zone' of 30m, and a 'controlled deceleration' zone of 30m. The mechanics and frequency were developed to equip the 800m runner to utilise this in the last 100m of the race.

Physical and tactical components

In the training phase, most two-lap athletes will follow a system of multi-tier training which will see them operating at a range of paces some faster and some slower than race pace, and completing sessions both 'under' and 'over-distance'. Race pace specificity in the event is variable. The predominant two trends are some athletes attempting to run even splits, with others trying to run a fast 400m before settling.

In terms of acceleration, the study of kinematics teaches us the following equation:

    acceleration = (final velocity - initial velocity) time elapsed

Acceleration in the 800m predominates in the last quarter of the race. Still, unlike a finishing kick, it can occur at any given point throughout the race due to tactical considerations. Therefore, the practice of periodically introducing the requirement to accelerate within a single repetition itself so that negative splits can be achieved is advocated.

Tactical components

An 800m race is rarely won in the first 600m. This being said, the ability to out-kick an opponent becomes a key variable for success and predominantly in the last quarter of the race. As well as a finishing kick, 'reaction time' refers to the ability to 'cover a break' mainly in the third quarter of the race and is dependent on good positioning within the pack as the bell is reached.


Having posited an 'ideal type' model, part two of this article sees the authors empirically test its strength by relating it to some of the all-time greats of two-lap running.

Article Reference

The information on this page is adapted from Long & James (2012)[1] with the kind permission of the authors and Athletics Weekly.


  1. LONG, M. and JAMES, G. (2012) Train your two-lap Tools, Athletics Weekly, 10th May, p. 56-57
  2. KLEIN, G. (1998) Sources of Power: How people make decisions. Cambridge, MA, MIT Press
  3. MACKENZIE, B. (2007) Hill Training [WWW] Available from: [Accessed 1/5/2012]
  4. HODGES, P.W. and RICHARDSON, C.A. (1997) Contraction of the abdominal muscles associated with movement of the lower limb. Physical therapy, 77 (1997)
  5. THOMPSON, P (1994) Lactate Dynamics Training [WWW] Available from: [Accessed 1/5/2012]
  6. THOMPSON, P (1995) New Interval Training [WWW] Available from: [Accessed 1/5/2012]
  7. BROOKS, G. (1986) The lactate shuttle during exercise and recovery. Medicine and Science in Sports and Exercise, 18(3), p. 360-8]

Page Reference

If you quote information from this page in your work, then the reference for this page is:

  • LONG, M. and JAMES, G. (2012) Train your two-lap Tools [WWW] Available from: [Accessed

About the Authors

Dr Matt Long works for British Athletics in coach education, having delivered work at the national high-performance centre at Loughborough University.

Geoff James works for England Athletics and is a Birchfield Harriers middle distance coach who has guided athletes to Olympic and world championship levels.